z-logo
open-access-imgOpen Access
A Computational Offloading Method for Edge Server Computing and Resource Allocation Management
Author(s) -
Muna AlRazgan,
Taha Alfakih,
Mohammad Mehedi Hassan
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/3557059
Subject(s) - computer science , server , mobile edge computing , cloud computing , distributed computing , edge computing , virtual machine , workload , scheduling (production processes) , response time , resource allocation , enhanced data rates for gsm evolution , mobile device , latency (audio) , computer network , operating system , mathematical optimization , telecommunications , mathematics
The emerging technology of mobile cloud is introduced to overcome the constraints of mobile devices. We can achieve that by offloading resource intensive applications to remote cloud-based data centers. For the remote computing solution, mobile devices (MDs) experience higher response time and delay of the network, which negatively affects the real-time mobile user applications. In this study, we proposed a model to evaluate the efficiency of the close-end network computation offloading in MEC. This model helps in choosing the adjacent edge server from the surrounding edge servers. This helps to minimize the latency and increase the response time. To do so, we use a decision rule based Heuristic Virtual Value (HVV). The HVV is a mapping function based on the features of the edge server like the workload and performance. Furthermore, we propose availability of a virtual machine resource algorithm (AVM) based on the availability of VM in edge cloud servers for efficient resource allocation and task scheduling. The results of experiment simulation show that the proposed model can meet the response time requirements of different real-time services, improve the performance, and minimize the consumption of MD energy and the resource utilization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom