MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways
Author(s) -
Jianwei Li,
Su Yan
Publication year - 2021
Publication title -
journal of oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 54
eISSN - 1687-8469
pISSN - 1687-8450
DOI - 10.1155/2021/3554219
Subject(s) - wnt signaling pathway , hepatocellular carcinoma , flow cytometry , cancer research , western blot , apoptosis , microrna , catenin , medicine , cell culture , cell growth , signal transduction , biology , microbiology and biotechnology , immunology , gene , genetics
Hepatocellular carcinoma (HCC) has threatened the health of humans, and some evidence has indicated that miR-466 involves the progressions of some cancers. This study focused on the role of miR-466 in the formation and development of HCC. The expression levels of miR-466 in the tissues of patients and HCC cell lines were measured by qRT-PCR, and CCK-8, transwell assay, and flow cytometry assay were used to observe the functions of miR-466 on the HCC cells. Moreover, the miRNA databases, dual-luciferase reporter assay, and Western blot were used for the investigation of the regulation mechanism of miR-466 on HCC cells. The results showed that miR-466 was significantly downregulated in HCC tissues and cell lines, and inhibited proliferation, invasion, and high apoptosis were found in HCC cells when miR-466 was overexpressed. The results confirmed that FMNL2 was a target of miR-466, and increased FMNL2 could reverse the effects of miR-466 on the phenotype of HCC cells. Besides, it was also found that miR-466 was involved in the regulation of NF- κ B and Wnt/ β -catenin pathways in HCC cells via targeting FMNL2. In conclusion, the results of this study suggest that miR-466 regulates the activities of NF- κ B and Wnt/ β -catenin pathways to inhibit the progression of HCC cells via targeting FMNL2.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom