z-logo
open-access-imgOpen Access
A Comparison among Different Machine Learning Pretest Approaches to Predict Stress-Induced Ischemia at PET/CT Myocardial Perfusion Imaging
Author(s) -
Rosario Megna,
Mario Petretta,
Roberta Assante,
Emilia Zampella,
Carmela Nappi,
Valeria Gaudieri,
Teresa Mannarino,
Adriana D’Antonio,
Roberta Green,
Valeria Cantoni,
Parthiban Arumugam,
Wanda Acampa,
Alberto Cuocolo
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/3551756
Subject(s) - adaboost , coronary artery disease , random forest , logistic regression , machine learning , medicine , pre and post test probability , gold standard (test) , cad , positron emission tomography , artificial intelligence , population , myocardial perfusion imaging , naive bayes classifier , support vector machine , radiology , computer science , environmental health , engineering drawing , engineering
Traditional approach for predicting coronary artery disease (CAD) is based on demographic data, symptoms such as chest pain and dyspnea, and comorbidity related to cardiovascular diseases. Usually, these variables are analyzed by logistic regression to quantifying their relationship with the outcome; nevertheless, their predictive value is limited. In the present study, we aimed to investigate the value of different machine learning (ML) techniques for the evaluation of suspected CAD; having as gold standard, the presence of stress-induced ischemia by 82 Rb positron emission tomography/computed tomography (PET/CT) myocardial perfusion imaging (MPI) ML was chosen on their clinical use and on the fact that they are representative of different classes of algorithms, such as deterministic (Support vector machine and Naïve Bayes), adaptive (ADA and AdaBoost), and decision tree (Random Forest, rpart, and XGBoost). The study population included 2503 consecutive patients, who underwent MPI for suspected CAD. To testing ML performances, data were split randomly into two parts: training/test (80%) and validation (20%). For training/test, we applied a 5-fold cross-validation, repeated 2 times. With this subset, we performed the tuning of free parameters for each algorithm. For all metrics, the best performance in training/test was observed for AdaBoost. The Naïve Bayes ML resulted to be more efficient in validation approach. The logistic and rpart algorithms showed similar metric values for the training/test and validation approaches. These results are encouraging and indicate that the ML algorithms can improve the evaluation of pretest probability of stress-induced myocardial ischemia.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom