z-logo
open-access-imgOpen Access
Biomechanical Effects of Aspect Ratio of the Knee during Outside-In Anterior Cruciate Ligament Reconstruction Surgery
Author(s) -
Tae Soo Bae,
Byeong Chan Cho,
DaiSoon Kwak
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/3454475
Subject(s) - epicondyle , anatomy , bending , anterior cruciate ligament reconstruction , femur , stress (linguistics) , orthodontics , anterior cruciate ligament , medicine , materials science , surgery , composite material , humerus , linguistics , philosophy
We analyzed tunnel length, graft bending angle, and stress of the graft according to tunnel entry position and aspect ratio (ASR: ratio of anteroposterior depth to mediolateral width) of the articular surface for the distal femur during single-bundle outside-in anterior cruciate ligament reconstruction (ACLR) surgery. We performed multiflexible body dynamic analyses with four ASR (98, 105, 111, and 117%) knee models. The various ASRs were associated with approximately 1 mm changes in tunnel length. The graft bending angle increased when the entry point was far from the lateral epicondyle and was larger when the ASR was smaller. The graft was at maximum stress, 117% ASR, when the tunnel entry point was near the lateral epicondyle. The maximum stress value at a 5 mm distance from the lateral epicondyle was 3.5 times higher than the 15 mm entry position, and the cases set to 111% and 105% ASR showed 1.9 times higher stress values when at a 5 mm distance compared with a 15 mm distance. In the case set at 98% ASR, the low-stress value showed a without-distance difference from the lateral epicondyle. Our results suggest that there is no relationship between the ASR and femoral tunnel length. A smaller ASR causes a higher graft bending angle, and a larger ASR causes greater stress in the graft.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom