z-logo
open-access-imgOpen Access
Various Soliton Solutions and Asymptotic State Analysis for the Discrete Modified Korteweg-de Vries Equation
Author(s) -
Zhe Lin,
XiaoYong Wen,
Meng-Li Qin
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/3445894
Subject(s) - korteweg–de vries equation , soliton , mathematics , mathematical physics , mathematical analysis , physics , nonlinear system , quantum mechanics
Under investigation is the discrete modified Korteweg-de Vries (mKdV) equation, which is an integrable discretization of the continuous mKdV equation that can describe some physical phenomena such as dynamics of anharmonic lattices, solitary waves in dusty plasmas, and fluctuations in nonlinear optics. Through constructing the discrete generalized m , N − m -fold Darboux transformation for this discrete system, the various discrete soliton solutions such as the usual soliton, rational soliton, and their mixed soliton solutions are derived. The elastic interaction phenomena and physical characteristics are discussed and illustrated graphically. The limit states of diverse soliton solutions are analyzed via the asymptotic analysis technique. Numerical simulations are used to display the dynamical behaviors of some soliton solutions. The results given in this paper might be helpful for better understanding the physical phenomena in plasma and nonlinear optics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom