z-logo
open-access-imgOpen Access
Application of Gauss Mutation Genetic Algorithm to Optimize Neural Network in Image Painting Art Teaching
Author(s) -
Weiming Xing,
Jian Zhang,
Quan Zou,
Jun Lin
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/3302617
Subject(s) - artificial neural network , genetic algorithm , image (mathematics) , computer science , mutation , painting , artificial intelligence , gauss , algorithm , computer vision , machine learning , genetics , art , biology , gene , art history , physics , quantum mechanics
With the continuous application of the art industry in various fields, more and more people choose to systematically learn the knowledge of the art industry. In the art major, image painting is one of the important contents of the art major. How to improve students' aesthetic quality and comprehensive professional quality is studied, in which the content learning of image painting art is the key. Therefore, we have carried out technical exploration and result analysis based on Gaussian mutation genetic algorithm to optimize the application of neural network in image painting art teaching. We use Gaussian mutation genetic algorithm to study the neural network optimized teaching cloud platform technology. Compared with the traditional algorithm, the algorithm proposed in this paper has more funny computational efficiency, being able to comprehensively evaluate and improve students' aesthetic quality and comprehensive professional quality. Gaussian mutation genetic algorithm can effectively improve the knowledge search ability of the platform and the running speed of the teaching platform. In the future research in the field of art industry, neural network will optimize the teaching cloud platform technology, which has laid a solid foundation for improving students' aesthetic quality and comprehensive professional quality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom