z-logo
open-access-imgOpen Access
Biocomposites Developed with Litchi Peel Based on Epoxy Resin: Mechanical Properties and Flame Retardant
Author(s) -
Tuan Anh Nguyen
Publication year - 2021
Publication title -
journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.436
H-Index - 50
eISSN - 2090-9063
pISSN - 2090-9071
DOI - 10.1155/2021/3287733
Subject(s) - epoxy , ultimate tensile strength , limiting oxygen index , fire retardant , composite material , izod impact strength test , environmentally friendly , chemistry , compressive strength , materials science , pyrolysis , organic chemistry , char , ecology , biology
Bio-based composites are reinforced polymeric materials, which include one or two bio-based components. Biocomposites have recently attracted great attention for applications ranging from home appliances to the automotive industry. The outstanding advantages are low cost, biodegradability, lightness, availability, and solving environmental problems. In recent days, biodegradable natural fibers are attracting a great deal of interest from researchers to work on and develop a new type of composite material for diverse applications. The objective of this work is to evaluate fire resistance and mechanical properties of epoxy polymer composites reinforced with lychee peel (Vietnam), at 10 wt%, 20 wt%, and 30 wt% mass%. The study showed that the mechanical properties and flame retardancy tended to increase in the presence of lychee peel reinforcement. In the combined ratios, 20 wt% lychee rind gave a limiting oxygen index of 21.5%, with a burning rate of 23.45 mm/min. In terms of mechanical strength, in which the Izod impact strength increased by 26.46%, the compressive strength increased by 25.20% and the tensile strength increased by 20.62%. The microscopic images (SEM images) show that the particle distribution is quite good and the adhesion and wetting compatibility on the two-phase interface of lychee peel-epoxy resin are strong.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom