z-logo
open-access-imgOpen Access
Uniqueness of Complete Hypersurfaces in Weighted Riemannian Warped Products
Author(s) -
Ning Zhang
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/3234263
Subject(s) - mathematics , uniqueness , product (mathematics) , space (punctuation) , pure mathematics , mathematical analysis , geometry , computer science , operating system
In this paper, applying the weak maximum principle, we obtain the uniqueness results for the hypersurfaces under suitable geometric restrictions on the weighted mean curvature immersed in a weighted Riemannian warped product I × ρMf whose fiber M has f -parabolic universal covering. Furthermore, applications to the weighted hyperbolic space are given. In particular, we also study the special case when the ambient space is weighted product space and provide some results by Bochner’s formula. As a consequence of this parametric study, we also establish Bernstein-type properties of the entire graphs in weighted Riemannian warped products.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom