Targeting lncRNA PSMA3-AS1, a Prognostic Marker, Suppresses Malignant Progression of Oral Squamous Cell Carcinoma
Author(s) -
Xinghua Cao,
Kefeng Luan,
Jie Yang,
Yun-Dong Huang
Publication year - 2021
Publication title -
disease markers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.912
H-Index - 66
eISSN - 1875-8630
pISSN - 0278-0240
DOI - 10.1155/2021/3138046
Subject(s) - downregulation and upregulation , cancer research , gene knockdown , western blot , vimentin , cell growth , transfection , biology , cell , luciferase , medicine , pathology , cell culture , immunohistochemistry , gene , biochemistry , genetics
Objective Oral squamous cell carcinoma (OSCC) represents the most common maxillofacial malignancy. This study elucidated the clinicopathological value and molecular mechanisms of PSMA3 antisense RNA 1 (PSMA3-AS1) in OSCC.Methods Totally, 135 OSCC patients were recruited. PSMA3-AS1 expression and its prognostic value were assessed in this cohort. si-PSMA3-AS1 was transfected into HN4 and CAL-27 OSCC cells. Then, cell proliferation was evaluated by CCK-8, colony formation, and EdU staining. Migration and invasion were investigated through wound healing, transwell, and western blot. The PSMA3-AS1/miR-136-5p and miR-136-5p/FN1 interactions were validated by dual luciferase report, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot.Results PSMA3-AS1 upregulation was determined in OSCC tissues. The upregulation indicated pessimistic patients' outcomes. Multivariate Cox regression analyses confirmed PSMA3-AS1 as an independent prognostic indicator. Its upregulation was also found in OSCC cells. Under transfection with si-PSMA3-AS1, proliferation, migration, and invasion were all restrained in HN4 and CAL-27 OSCC cells. Furthermore, its knockdown induced the increase in E-cadherin expression and the reduction in N-cadherin and Vimentin expression. PSMA3-AS1 was a sponge of miR-136-5p. Mutual inhibition was found between two and the interactions were confirmed by dual luciferase report. It was confirmed that FN1 was a target of miR-136-5p. FN1 expression was increased by miR-136-5p inhibitors, which was lessened by si-PSMA3-AS1 cotransfection.Conclusion Collectively, PSMA3-AS1 as a risk factor facilitated malignant behaviors of OSCC cells, related to the miR-136-5p/FN1 axis. Hence, PSMA3-AS1 as a potential therapeutic target for OSCC deserved further exploration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom