z-logo
open-access-imgOpen Access
A Novel Adaptive Visual Analytics Framework for Multiship Encounter Identification
Author(s) -
Zhen Rong,
Ziqiang Shi
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/3063957
Subject(s) - dbscan , computer science , identification (biology) , analytics , cluster analysis , visual analytics , visibility , automatic identification system , noise (video) , visualization , collision avoidance , data mining , artificial intelligence , collision , image (mathematics) , geography , computer security , botany , canopy clustering algorithm , correlation clustering , meteorology , biology
The automatic identification of multiship encounter is a vital criterion for ship collision avoidance and intelligent maritime safety surveillance. However, the parameters of ship encounter identification in the existing studies are fixed, and the methods are weak to give an automatic and visual performance in the multiship encounter identification. In order to fix the existed gap, this paper proposed a novel adaptive visual analytics framework for automatic multiship encounter identification based on density-based spatial clustering of applications with noise (DBSCAN) and visual analytics by adjusting the parameters of ship encounter adaptively. The DBSCAN clustering method was applied to detect the clusters of encounter ships and filter out the nonencounter ship, and the distribution and density of the encounter ship had been visualized on the nautical chart to give a better perception of ships’ behavior with a potentially high navigational risk. The framework had been designed and developed using DBSCAN and visual analytics, and the effectiveness was evaluated and validated by adjusting different parameters of multiship encounter within the Southwest waters of Zhoushan Island, China. The results showed that the proposed framework had a good performance in the visual identification of multiship encounter within confined waters, which could assist the ship collision avoidance and intelligent maritime surveillance system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom