MDGCN: Multiple Graph Convolutional Network Based on the Differential Calculation for Passenger Flow Forecasting in Urban Rail Transit
Author(s) -
Chenxi Wang,
Huizhen Zhang,
Shuilin Yao,
Wenlong Yu,
Ming Ye
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/2956151
Subject(s) - computer science , graph , adjacency list , geospatial analysis , data mining , convolutional neural network , correlation , artificial intelligence , machine learning , algorithm , theoretical computer science , geography , remote sensing , mathematics , geometry
Passenger flow forecasting plays an important role in urban rail transit (URT) management. However, complex spatial and temporal correlations make this task extremely challenging. Previous work has been done by capturing spatiotemporal correlations of historical data. However, the spatiotemporal relationship between stations not only is limited to geospatial adjacency, but also lacks different perspectives of station correlation analysis. To fully capture the spatiotemporal correlations, we propose a deep learning model based on graph convolutional neural networks called MDGCN. Firstly, we identify the heterogeneity of stations under two spaces by the Multi-graph convolutional layer. Secondly, we designed the Diff-graph convolutional layer to identify the changing trend of heterogeneous features and used the attention mechanism unit with the LSTM unit to achieve adaptive fusion of multiple features and modeling of temporal correlation. We evaluate this model on real datasets. Compared to the best baselines, the root-mean-square errors of MDGCN are improved by 1%–15% for different prediction intervals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom