An Improved Image Segmentation Algorithm CT Superpixel Grid Using Active Contour
Author(s) -
Yuntao Wei,
Xiaojuan Wang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/2906868
Subject(s) - computer science , active contour model , artificial intelligence , computer vision , grid , segmentation , image segmentation , pattern recognition (psychology) , algorithm , mathematics , geometry
The traditional CT image segmentation algorithm is easy to ignore image contour initialization, which leads to the problem of long time consuming and low accuracy. A superpixel mesh CT image improved segmentation algorithm using active contour was proposed. CT image superpixel gridding was carried out first; secondly, on the basis of gridding, the region growth criterion was improved by superpixel processing, the region growth graph was established, the image edge salient graph was calculated based on the growth graph, and the target edge was obtained as the initial contour; finally, the Mumford-Shah model in the active contour model was improved; the energy functional was constructed based on the improved model and transformed into the symbol distance function. The results show that the proposed algorithm takes less time to mesh superpixels, the accuracy of image edge calculation is high, the correct classification coefficient is as high as 0.9, and the accuracy of CT image segmentation is always higher than 90%, which has superiority.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom