An Improved Asymptotic on the Representations of Integers as Sums of Products
Author(s) -
Wenjia Zhao
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/2902015
Subject(s) - mathematics , combinatorics
In this paper, we improve the error terms of Chace’s results in the study by Chace (1994) on the number of ways of writing an integer N as a sum of k products of l factors, valid for k ≥ 3 and l = 2 , 3. More precisely, for l = 2 , 3, we improve the upper bound N k − 1 − 2 k − 2 / k − 1 l + 1 + ε , k ≥ 3 for the error term, to N 2 − 2 / 2 l + 1 + ε when k = 3 and N k − 1 − 4 k − 2 / l + 1 k + l − 2 + ε when k ≥ 4 .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom