z-logo
open-access-imgOpen Access
MiR-490-5p Restrains Progression of Gastric cancer through DTL Repression
Author(s) -
Jianjie Li,
Xiaoyue Xu,
Chunhui Liu,
Xiaoxue Xi,
Yang Wang,
Xiaotang Wu,
Hua Li
Publication year - 2021
Publication title -
gastroenterology research and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.622
H-Index - 45
eISSN - 1687-630X
pISSN - 1687-6121
DOI - 10.1155/2021/2894117
Subject(s) - apoptosis , psychological repression , flow cytometry , microrna , downregulation and upregulation , carcinogenesis , cell cycle , cancer research , cancer , medicine , cell growth , viability assay , cell , biology , immunology , gene expression , gene , biochemistry
Gastric cancer (GC) accounts for a main cause of cancer-related deaths. This study sought for molecular mechanism of miR-490-5p/DTL axis in affecting GC progression, thus bringing new hope for treatment of GC. Expression data of differentially expressed miRNAs and mRNAs in GC tissue from TCGA database were analyzed. MiR-490-5p and DTL mRNA expression levels in GC were evaluated with qRT-PCR. Cell viability was confirmed with CCK-8 method. Cell cycle distribution and apoptosis were analyzed with flow cytometry. Cell migratory and invasive potential was proved with Transwell assay. The targeted relationship between DTL and miR-490-5p was analyzed with dual-luciferase assay. The results indicated a decreased miR-490-5p level in GC cells. MiR-490-5p upregulation hampered proliferation, migration, invasion and promote cell apoptosis. DTL was the target of and inversely associated with miR-490-5p, and it could remarkably induce the carcinogenesis of GC. MiR-490-5p mediated GC cell progression by DTL repression. In conclusion, miR-490-5p and DTL may be valuable in diagnosis and treatment for GC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom