z-logo
open-access-imgOpen Access
AVoD: Advanced Verify-on-Demand for Efficient Authentication against DoS Attacks in V2X Communication
Author(s) -
Taehyoung Ko,
Cheongmin Ji,
Manpyo Hong
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/2890132
Subject(s) - computer science , credential , authentication (law) , computer security , denial of service attack , computer network , message authentication code , cryptography , the internet , world wide web
Owing to the development of information and communication technology (ICT), autonomous cooperative vehicles are being developed. Autonomous cooperative driving combines vehicle-to-everything (V2X) communication technology in existing autonomous driving and provides safe driving by sharing information between communication entities. However, security factors should be considered during communication. Security Credential Management System (SCMS) has been proposed as one of these elements, but it is vulnerable to denial-of-service (DoS) attacks due to message authentication costs. In congested situations, the number of messages exchanged between vehicles becomes very large. However, the performance of the on-board unit (OBU) is not sufficient to handle huge number of messages, which can lead to a DoS attack. Therefore, a technique to prevent DoS attacks on autonomous cooperative driving vehicles using SCMS has been proposed in this paper. The proposed technique reduces authentication costs by classifying similar messages into multiple categories and authenticating only the first message represented in the group for a unit time. The effectiveness of this technique has been demonstrated by comparing the time it takes to verify huge number of message signatures in each method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom