z-logo
open-access-imgOpen Access
Different Transfer Functions for Binary Particle Swarm Optimization with a New Encoding Scheme for Discounted {0-1} Knapsack Problem
Author(s) -
Tung Khac Truong
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2864607
Subject(s) - knapsack problem , binary number , mathematical optimization , particle swarm optimization , continuous knapsack problem , scheme (mathematics) , polynomial time approximation scheme , encoding (memory) , mathematics , algorithm , subset sum problem , computer science , artificial intelligence , mathematical analysis , arithmetic
The discounted {0-1} knapsack problem (DKP01) is a kind of knapsack problem with group structure and discount relationships among items. It is more challenging than the classical 0-1 knapsack problem. In this paper, we study binary particle swarm optimization (PSO) algorithms with different transfer functions and a new encoding scheme for DKP01. An effective binary vector with shorter length is used to represent a solution for new binary PSO algorithms. Eight transfer functions are used to design binary PSO algorithms for DKP01. A new repair operator is developed to handle isolation solution while improving its quality. Finally, we conducted extensive experiments on four groups of 40 instances using our proposed approaches. The experience results show that the proposed algorithms outperform the previous algorithms named FirEGA and SecEGA . Overall, the proposed algorithms with a new encoding scheme represent a potential approach for solving the DKP01.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom