z-logo
open-access-imgOpen Access
Wireless Network Sensing of Urban Surface Water Environment Based on Clustering Algorithm
Author(s) -
Qichao Zhao,
Xiufeng Yang,
Xuxin Dong,
Huairui Li
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/2829195
Subject(s) - computer science , cluster analysis , wireless , wireless network , computer network , wireless sensor network , algorithm , data mining , artificial intelligence , telecommunications
To improve the wireless sensing image extraction technology of urban surface water environment, a regional FCM clustering method combined with water index was proposed in this paper. The normalized water index (NDWI) was obtained by calculating the fusion multispectral wireless sensing image. Through the combination with normalized water index, fuzzy clustering results were obtained by RFCM algorithm proposed in this paper. The optimal threshold was selected to defuzzify the fuzzy clustering results, and finally, the extraction results of urban surface water were obtained. The accuracy of the proposed algorithm was compared with that of the traditional surface water extraction algorithm. The experimental results showed that the size of different neighborhood regions affected the water extraction accuracy. In W city, the kappa coefficient of MFCM16 was 0.41% higher than that of MFCM8, and the overall classification accuracy of MFCM16 was 1.33% higher than that of MFCM. In G city area, the kappa coefficient of MFCM16 was 1.81% higher than that of MFCM8, and the overall classification accuracy of MFCM16 was 1.7% higher than that of MFCM. Comparing the RFCM algorithm with other algorithms, the RFCM algorithm obtained the best experimental results, to reduce the “salt-and-pepper phenomenon” effect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom