z-logo
open-access-imgOpen Access
New Approach towards Generalizing Feistel Networks and Its Provable Security
Author(s) -
Jiajie Liu,
Bing Sun,
Chao Li
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/2751797
Subject(s) - block cipher , soundness , computer science , key (lock) , discrete mathematics , block (permutation group theory) , upper and lower bounds , cryptography , theoretical computer science , mathematics , combinatorics , algorithm , computer security , programming language , mathematical analysis
This paper proposes a new approach to generalizing Feistel networks, which unifies the classical (balanced) Feistel network and the Lai–Massey structure. We call the new structure extended Feistel (E-Feistel) network. To justify its soundness, we investigate its indistinguishability using Patarin’s H-coefficient technique. As a result, it is proved that the 4-round key-alternating E-Feistel (KAEF) cipher with adequately derived keys and identical round functions is secure up to 2 n / 2 queries, i.e., birthday-bound security. In addition, when adjacent round keys are independent and independent round functions are used, the 6-round KAEF is secure up to beyond-birthday-bound 2 2 n / 3 queries. Our results indicate that the E-Feistel structure is secure and reliable and can be adopted in designing practical block ciphers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom