An Extended Car-Following Model in Connected and Autonomous Vehicle Environment: Perspective from the Cooperation between Drivers
Author(s) -
Shenzhen Ding,
Xumei Chen,
Zexin Fu,
Fei Peng
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/2739129
Subject(s) - trajectory , beijing , kalman filter , set (abstract data type) , computer science , data set , component (thermodynamics) , traffic simulation , intelligent transportation system , simulation , intersection (aeronautics) , engineering , artificial intelligence , transport engineering , physics , astronomy , political science , law , china , thermodynamics , programming language
The development of connected and autonomous vehicle (CAV) technology has received increasing attention in recent years. Although car-following behavior in mixed traffic with CAVs and human-driven vehicles (HDVs) is a core component of microscopic traffic simulation, intelligent traffic systems, etc., the current study of car-following behavior in mixed traffic has some limitations. Furthermore, actual data do not support its applicability to the Chinese traffic environment. To address this gap, this paper designs and organizes a car-following experiment in mixed traffic in Beijing, extracts the trajectory data of CAVs and HDVs based on video recognition, and reconstructs the extracted trajectory data using the Lagrangian theory and Kalman filter theory to ensure the accuracy of the data. Based on this data set, this paper develops an extended car-following model. The model considers the cooperation between drivers by reformulating the prospect theory (PT). The root mean square percentage error (RMSPE) is selected to calibrate and validate the parameters of the proposed model, and the results show that there is significant heterogeneity between CAVs and HDVs in mixed traffic, and the proposed model captures this heterogeneity well. The model presented in this paper provides theoretical support for microscopic traffic simulation in mixed traffic.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom