z-logo
open-access-imgOpen Access
Intelligent Point Cloud Edge Detection Method Based on Projection Transformation
Author(s) -
Juan Zhu,
Xiaofeng Yue,
Jipeng Huang,
Zongwei Huang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/2706462
Subject(s) - computer science , transformation (genetics) , projection (relational algebra) , enhanced data rates for gsm evolution , point cloud , computer vision , cloud computing , artificial intelligence , edge detection , point (geometry) , algorithm , image processing , image (mathematics) , geometry , mathematics , biochemistry , chemistry , gene , operating system
An edge detection method based on projection transformation is proposed. First, the vertical projection transformation is carried out on the target point cloud. Data X and data Y are normalized to the width and height of the image, respectively. Data Z is normalized to the range of 0-255, and the depth represents the gray level of the image. Then, the Canny algorithm is used to detect the edge of the projection transformed image, and the detected edge data is back projected to extract the edge point cloud in the point cloud. Evaluate the performance by calculating the normal vector of the edge point cloud. Compared with the normal vector of the whole data point cloud of the target, the normal vector of the edge point cloud can well express the characteristics of the target, and the calculation time is reduced to 10% of the original.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom