Effect of 3D Metal on Electrochemical Properties of Sodium Intercalation Cathode P2-NaxMe1/3Mn2/3O2 (M = Co, Ni, or Fe)
Author(s) -
Nam Pham Phuong Le,
Le Thanh Nguyen Huynh,
An Phan,
Dieu Thi Ngoc Nguyen,
Trang Nguyen,
Van Hoang Nguyen,
Xujian Cui,
Akhil Garg,
My Loan Phung Le,
Mẫn Văn Trần
Publication year - 2021
Publication title -
journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.436
H-Index - 50
eISSN - 2090-9063
pISSN - 2090-9071
DOI - 10.1155/2021/2680849
Subject(s) - chemistry , coprecipitation , calcination , intercalation (chemistry) , electrochemistry , cathode , redox , oxide , metal , analytical chemistry (journal) , inorganic chemistry , lithium (medication) , chemical engineering , nuclear chemistry , electrode , chromatography , catalysis , organic chemistry , medicine , engineering , endocrinology
This research aims to evaluate the influence of different 3D metals (Fe, Co, and Ni) substituted to Mn on the electrochemical performance of P2-NaxMe1/3Mn2/3O2 material, which was synthesized by the coprecipitation process followed by calcination at high temperature. X-ray diffraction (XRD) results revealed that the synthesized Mn-rich materials possessed a P2-type structure with a negligible amount of oxide impurities. The materials possessed their typical cyclic voltammogram and charge-discharge profiles; indeed, a high reversible redox reaction was obtained by NaxCo1/3Mn2/3O2 sample. Both NaxCo1/3Mn2/3O2 and NaxFe1/3Mn2/3O2 provided a high specific capacity of above 140 mAh·g−1; however, the former showed better cycling performance with 83% capacity retention after 50 cycles at C/10 and high rate capability. Meanwhile, the Ni-sub NaxNi1/3Mn2/3O2 exhibited excellent cycling stability but a low specific capacity of 110 mAh·g−1 and inferior rate capability. The diffusion coefficient of Na+ ions into the structure tended to decrease with a depth of discharge; those values were in the range of 10−10–10−9 cm2·s−1 and 10−11–10−10 cm2·s−1 in the solid solution region and biphasic region, respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom