Intraspecific DNA Barcoding and Variation Analysis for Citri Reticulatae Pericarpium of Citrus reticulata “Chachi”
Author(s) -
Mengshi Liu,
Kanghui Wang,
Baizhong Chen,
Yi Cai,
Chuwen Li,
Wanling Yang,
Minyan Wei,
Guodong Zheng
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/2609935
Subject(s) - biology , rutaceae , intraspecific competition , botany , dna barcoding , nobiletin , rootstock , evolutionary biology , zoology , flavonoid , biochemistry , antioxidant
Citri Reticulatae Pericarpium, the desiccative mature peel of Citrus reticulata Blanco or its cultivated varieties, is a national geographical indicated product that has the concomitant function of both medicine and foodstuff. The primary source of Citri Reticulatae Pericarpium is Citrus reticulata “Chachi,” called “Guang chenpi,” while it differs in variety, propagation, grafting rootstock, and tree age, and the hereditary stability of its biological information between intraspecific plants is worthy of our attention. Homologous analysis result of 4 DNA barcodings in the ribosome or the chloroplast showed that the homology of them (ITS2, rbcl, matK, and psbA-trnH) of 22 samples was 100.00%, 99.97%, 99.99%, and 99.81%, respectively, which indicated that 4 DNA barcodes maintained a high degree of genetic stability in Citrus reticulata “Chachi.” Also, ITS2 was considered to identify Citrus reticulata “Chachi” from other varieties because it presented not only low variability within a certain taxon but also a high level of interspecies variability. Simultaneously, variant site detection of Citrus reticulata “Chachi” was analyzed by comparing with the reference Citrus reticulata genome, and 2652697 SNP sites and 533906 InDel sites were detected from whole-genome resequencing data of 22 samples, providing the data resources and theoretical foundation for the future study about the relevant molecular makers of “Guang chenpi.”
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom