Design Space Exploration for High-Speed Implementation of the MISTY1 Block Cipher
Author(s) -
Raza Hasan,
Yasir Khizar,
Salman Mahmood,
Muhammad Kashif Sheikh
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2599500
Subject(s) - computer science , field programmable gate array , block cipher , pipeline (software) , encryption , block (permutation group theory) , enhanced data rates for gsm evolution , speedup , parallel computing , block size , advanced encryption standard , embedded system , computer hardware , computer architecture , computer engineering , key (lock) , computer network , mathematics , telecommunications , geometry , computer security , programming language
This paper proposes 2 × unrolled high-speed architectures of the MISTY1 block cipher for wireless applications including sensor networks and image encryption. Design space exploration is carried out for 8-round MISTY1 utilizing dual-edge trigger (DET) and single-edge trigger (SET) pipelines to analyze the tradeoff w.r.t. speed/area. The design is primarily based on the optimized implementation of lookup tables (LUTs) for MISTY1 and its core transformation functions. The LUTs are designed by logically formulating S9/S7 s-boxes and FI and {FO + 32-bit XOR} functions with the fine placement of pipelines. Highly efficient and high-speed MISTY1 architectures are thus obtained and implemented on the field-programmable gate array (FPGA), Virtex-7, XC7VX690T. The high-speed/very high-speed MISTY1 architectures acquire throughput values of 25.2/43 Gbps covering an area of 1331/1509 CLB slices, respectively. The proposed MISTY1 architecture outperforms all previous MISTY1 implementations indicating high speed with low area achieving high efficiency value. The proposed architecture had higher efficiency values than the existing AES and Camellia architectures. This signifies the optimizations made for proposed high-speed MISTY1 architectures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom