Hybrid Inception v3 XGBoost Model for Acute Lymphoblastic Leukemia Classification
Author(s) -
S Ramaneswaran,
Kathiravan Srinivasan,
P. M. Durai Raj Vincent,
ChuanYu Chang
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/2577375
Subject(s) - softmax function , lymphoblastic leukemia , artificial intelligence , pattern recognition (psychology) , feature (linguistics) , computer science , feature extraction , contextual image classification , leukemia , medicine , convolutional neural network , image (mathematics) , linguistics , philosophy
Acute lymphoblastic leukemia (ALL) is the most common type of pediatric malignancy which accounts for 25% of all pediatric cancers. It is a life-threatening disease which if left untreated can cause death within a few weeks. Many computerized methods have been proposed for the detection of ALL from microscopic cell images. In this paper, we propose a hybrid Inception v3 XGBoost model for the classification of acute lymphoblastic leukemia (ALL) from microscopic white blood cell images. In the proposed model, Inception v3 acts as the image feature extractor and the XGBoost model acts as the classification head. Experiments indicate that the proposed model performs better than the other methods identified in literature. The proposed hybrid model achieves a weighted F1 score of 0.986. Through experiments, we demonstrate that using an XGBoost classification head instead of a softmax classification head improves classification performance for this dataset for several different CNN backbones (feature extractors). We also visualize the attention map of the features extracted by Inception v3 to interpret the features learnt by the proposed model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom