Dingo Optimizer: A Nature-Inspired Metaheuristic Approach for Engineering Problems
Author(s) -
Amit Kumar Bairwa,
Sandeep Joshi,
Dilbag Singh
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2571863
Subject(s) - dingo , metaheuristic , mathematical optimization , particle swarm optimization , computer science , swarm behaviour , canis , artificial intelligence , ecology , predation , algorithm , mathematics , biology
Optimization is a buzzword, whenever researchers think of engineering problems. This paper presents a new metaheuristic named dingo optimizer (DOX) which is motivated by the behavior of dingo (Canis familiaris dingo). The overall concept is to develop this method involving the collaborative and social behavior of dingoes. The developed algorithm is based on the hunting behavior of dingoes that includes exploration, encircling, and exploitation. All the above prey hunting steps are modeled mathematically and are implemented in the simulator to test the performance of the proposed algorithm. Comparative analyses are drawn among the proposed approach and grey wolf optimizer (GWO) and particle swarm optimizer (PSO). Some of the well-known test functions are used for the comparative study of this work. The results reveal that the dingo optimizer performed significantly better than other nature-inspired algorithms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom