z-logo
open-access-imgOpen Access
Numerical Solutions of Certain New Models of the Time-Fractional Gray-Scott
Author(s) -
Sami Aljhani,
Mohd Salmi Md Noorani,
Khaled M. Saad,
A‎. ‎K‎. Alomari
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 28
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/2544688
Subject(s) - gray (unit) , mathematics , statistical physics , geology , computer science , physics , medicine , radiology
A reaction-diffusion system can be represented by the Gray-Scott model. In this study, we discuss a one-dimensional time-fractional Gray-Scott model with Liouville-Caputo, Caputo-Fabrizio-Caputo, and Atangana-Baleanu-Caputo fractional derivatives. We utilize the fractional homotopy analysis transformation method to obtain approximate solutions for the time-fractional Gray-Scott model. This method gives a more realistic series of solutions that converge rapidly to the exact solution. We can ensure convergence by solving the series resultant. We study the convergence analysis of fractional homotopy analysis transformation method by determining the interval of convergence employing the ℏ u , v -curves and the average residual error. We also test the accuracy and the efficiency of this method by comparing our results numerically with the exact solution. Moreover, the effect of the fractionally obtained derivatives on the reaction-diffusion is analyzed. The fractional homotopy analysis transformation method algorithm can be easily applied for singular and nonsingular fractional derivative with partial differential equations, where a few terms of series solution are good enough to give an accurate solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom