Dynamic Response of Parallel Overlapped Tunnel under Seismic Loading by Shaking Table Tests
Author(s) -
Tao Yang,
Yunkang Rao,
Honggang Wu,
Junyun Zhang,
Lei Hao,
Haojiang Ding
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/2535762
Subject(s) - earthquake shaking table , structural engineering , arch , span (engineering) , geology , geotechnical engineering , stiffness , failure mode and effects analysis , engineering
Potential earthquake-induced damage to overlapped tunnels probably occurs during the operation and maintenance of mountain tunnel engineering, especially in the seismically active zone. This study investigated the dynamic response and the failure characteristics of the parallel overlapped tunnel under seismic loadings by employing shaking table tests. The failure mode of the parallel overlapped tunnels was analyzed through macroscopic test phenomena. The dynamic responses of the surrounding rock and tunnel lining were evaluated by acceleration and dynamic strain, respectively. In particular, wavelet packets were used to investigate the spectrum characteristics of the tunnel structure in depth. The failure process of the model can be divided into three stages. The upper-span and the under-crossing tunnels showed different failure characteristics. Additionally, the lining damage on the outer surface of the tunnel mainly occurred on the right side arch waist and the left side wall, whereas the lining damage on the inner surface of the tunnel mainly appeared on the crown and invert. Wavelet packet energy results showed that the energy characteristic distributions of the upper-span and the under-crossing tunnels were not consistent. Specifically, the energy eigenvalues of the crown of the upper-span tunnel and the invert of the under-crossing tunnel were the largest, which should be considered to be the weak parts in the seismic design.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom