Imperfect Fluid Generalized Robertson Walker Spacetime Admitting Ricci-Yamabe Metric
Author(s) -
Ali H. Alkhaldi,
Mohd Danish Siddiqi,
Meraj Ali Khan,
Lamia Saeed Alqahtani
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/2485804
Subject(s) - yamabe flow , metric (unit) , spacetime , imperfect , mathematics , mathematical physics , physics , scalar curvature , geometry , philosophy , curvature , linguistics , operations management , quantum mechanics , sectional curvature , economics
In the present paper, we investigate the nature of Ricci-Yamabe soliton on an imperfect fluid generalized Robertson-Walker spacetime with a torse-forming vector field ξ . Furthermore, if the potential vector field ξ of the Ricci-Yamabe soliton is of the gradient type, the Laplace-Poisson equation is derived. Also, we explore the harmonic aspects of η -Ricci-Yamabe soliton on an imperfect fluid GRW spacetime with a harmonic potential function ψ . Finally, we examine necessary and sufficient conditions for a 1 -form η , which is the g -dual of the vector field ξ on imperfect fluid GRW spacetime to be a solution of the Schrödinger-Ricci equation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom