z-logo
open-access-imgOpen Access
Robust Suspicious Action Recognition Approach Using Pose Descriptor
Author(s) -
Waqas Ahmed,
Muhammad Haroon Yousaf,
Amanullah Yasin
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2449603
Subject(s) - benchmark (surveying) , artificial intelligence , computer science , frame (networking) , action (physics) , process (computing) , computer vision , motion (physics) , feature (linguistics) , position (finance) , representation (politics) , orientation (vector space) , support vector machine , pattern recognition (psychology) , mathematics , geography , telecommunications , linguistics , philosophy , physics , geometry , geodesy , quantum mechanics , politics , political science , law , economics , operating system , finance
In the current era of technological development, human actions can be recorded in public places like airports, shopping malls, and educational institutes, etc., to monitor suspicious activities like terrorism, fighting, theft, and vandalism. Surveillance videos contain adequate visual and motion information for events that occur within a camera’s view. Our study focuses on the concept that actions are a sequence of moving body parts. In this paper, a new descriptor is proposed that formulates human poses and tracks the relative motion of human body parts along with the video frames, and extracts the position and orientation of body parts. We used Part Affinity Fields (PAFs) to acquire the associated body parts of the people present in the frame. The architecture jointly learns the body parts and their associations with other body parts in a sequential process, such that a pose can be formulated step by step. We can obtain the complete pose with a limited number of points as it moves along the video and we can conclude with a defined action. Later, these feature points are classified with a Support Vector Machine (SVM). The proposed work was evaluated on the benchmark datasets, namely, UT-interaction, UCF11, CASIA, and HCA datasets. Our proposed scheme was evaluated on the aforementioned datasets, which contained criminal/suspicious actions, such as kick, punch, push, gun shooting, and sword-fighting, and achieved an accuracy of 96.4% on UT-interaction, 99% on UCF11, 98% on CASIA and 88.72% on HCA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom