SAR Target Recognition Using Improved Sparse Representation with Local Reconstruction
Author(s) -
Li Ma
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/2446848
Subject(s) - robustness (evolution) , pattern recognition (psychology) , computer science , artificial intelligence , sparse approximation , synthetic aperture radar , target acquisition , dictionary learning , sample (material) , representation (politics) , chemistry , biochemistry , chromatography , gene , politics , political science , law
In order to handle the problem of synthetic aperture radar (SAR) target recognition, an improved sparse representation-based classification (SRC) is proposed. According to the sparse coefficient vector resulting from the global dictionary, the largest coefficient in each class is taken as the reference. Then, the surrounding neighborhoods of the sample with the largest coefficient are selected to construct the optimal local dictionary in each training class. Afterwards, the samples in the local dictionary are used to reconstruct the test sample to be identified. Finally, the decision is made according to the comparison of the reconstruction errors from different classes. In the experiments, the proposed method is verified based on the moving and stationary target acquisition and recognition (MSTAR) dataset. The results show that the proposed method has performance advantages over existing methods, which demonstrates its effectiveness and robustness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom