z-logo
open-access-imgOpen Access
Identification of Six Autophagy-Related-lncRNA Prognostic Biomarkers in Uveal Melanoma
Author(s) -
Yao Chen,
Lu Chen,
Jinwei Wang,
Jia Tan,
Sha Wang
Publication year - 2021
Publication title -
disease markers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.912
H-Index - 66
eISSN - 1875-8630
pISSN - 0278-0240
DOI - 10.1155/2021/2401617
Subject(s) - autophagy , proportional hazards model , melanoma , long non coding rna , oncology , kegg , biology , cancer , medicine , bioinformatics , gene , cancer research , rna , gene ontology , gene expression , apoptosis , genetics
Currently, no autophagy-related long noncoding RNA (lncRNA) has been reported to predict the prognosis of uveal melanoma patients. Our study screened for autophagy-related lncRNAs in 80 samples downloaded from The Cancer Genome Atlas (TCGA) database through lncRNA-mRNA coexpression. We used univariate Cox to further filter the lncRNAs. Multivariate Cox regression and LASSO regression were applied to construct an autophagy-associated lncRNA predictive model and calculate the risk score. Clinical risk factors were validated using Cox regression to determine whether they were independent prognostic indicators. Functional enrichment was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The model was built with six predictive autophagy-associated lncRNAs and clustered uveal melanoma patients into high- and low-risk groups. The risk score of our model was a significant independent prognostic factor (hazard ratio = 1.0; p < 0.001). Moreover, these six lncRNAs were significantly concentrated in the biological pathways of cytoplasmic component recycling, energy metabolism, and apoptosis. Thus, the six autophagy-associated lncRNAs are potential molecular biomarkers and treatment targets for uveal melanoma patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom