Background Modeling Based on Statistical Clustering Partitioning
Author(s) -
Biao Li,
Zhiyong Xu,
Jianlin Zhang,
Xiangru Wang,
Xiangsuo Fan
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2346438
Subject(s) - cluster analysis , residual , artificial intelligence , pattern recognition (psychology) , rank (graph theory) , segmentation , computer science , statistical model , image (mathematics) , contrast (vision) , computer vision , noise (video) , image segmentation , frame (networking) , matrix (chemical analysis) , mathematics , algorithm , telecommunications , materials science , composite material , combinatorics
In order to effectively detect dim-small targets in complex scenes, background suppression is applied to highlight the targets. This paper presents a statistical clustering partitioning low-rank background modeling algorithm (SCPLBMA), which clusters the image into several patches based on image statistics. The image matrix of each patch is decomposed into low-rank matrix and sparse matrix in the SCPLBMA. The background of the original video frames is reconstructed from the low-rank matrices, and the targets can be obtained by subtracting the background. Experiments on different scenes show that the SCPLBMA can effectively suppress the background and textures and equalize the residual noise with gray levels significantly lower than that of the targets. Thus, the difference images obtain good stationary characteristics, and the contrast between the targets and the residual backgrounds is significantly improved. Compared with six other algorithms, the SCPLBMA significantly improved the target detection rates of single-frame threshold segmentation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom