A Novel Guidance Law for Intercepting a Highly Maneuvering Target
Author(s) -
Gang Wu,
Ke Zhang
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/2326323
Subject(s) - control theory (sociology) , backstepping , lyapunov stability , artificial neural network , computer science , observer (physics) , nonlinear system , law , autopilot , convergence (economics) , missile guidance , adaptive control , missile , control engineering , engineering , artificial intelligence , control (management) , aerospace engineering , physics , quantum mechanics , political science , economics , economic growth
Given the resolution of the guidance for intercepting highly maneuvering targets, a novel finite-time convergent guidance law is proposed, which takes the following conditions into consideration, including the impact angle constraint, the guidance command input saturation constraint, and the autopilot second-order dynamic characteristics. Firstly, based on the nonsingular terminal sliding mode control theory, a finite-time convergent nonsingular terminal sliding mode surface is designed. On the back of the backstepping control method, the virtual control law appears. A nonlinear first-order filter is constructed so as to address the “differential expansion” problem in traditional backstepping control. By designing an adaptive auxiliary system, the guidance command input saturation problem is dealt with. The RBF neural network disturbance observer is used for estimating the unknown boundary external disturbances of the guidance system caused by the target acceleration. The parameters of the RBF neural network are adjusted online in real time, for the purpose of improving the estimation accuracy of the RBF neural network disturbance observer and accelerating its convergence characteristics. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network disturbance observer. Then, the Lyapunov stability theory is used to prove the finite-time stability of the guidance law. Finally, numerical simulations verify the effectiveness and superiority of the proposed guidance law.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom