z-logo
open-access-imgOpen Access
Drivers of Stock Prices in Ghana: An Empirical Mode Decomposition Approach
Author(s) -
Emmanuel Numapau Gyamfi,
Frederick Asafo-Adjei Sarpong,
Anokye M. Adam
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2321042
Subject(s) - hilbert–huang transform , econometrics , stock (firearms) , stock market , economics , stock market index , financial economics , cluster analysis , statistics , mathematics , geography , context (archaeology) , archaeology , white noise
This study utilized the empirical mode decomposition (EMD) technique and examined which group of investors based on their trading frequencies influence stock prices in Ghana. We applied this technique to a dataset of daily closing prices of GSE Financial Stock Index for the period 04/01/2011 to 28/08/2015. The daily closing prices were decomposed into six intrinsic mode functions (IMFs) and a residue. We used the hierarchical clustering method to reconstruct the IMFs into high frequency, low frequency, and trend components. Using statistical measures such as Pearson product moment correlation coefficient and the Kendall rank correlation, we found that the low frequency and trend components of stock prices are the main drivers of the GSE stock index. These low-frequency traders are the institutional investors. Therefore, stock prices on the GSE are affected by real economic growth but not short-lived market fluctuations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom