A Modified Slime Mould Algorithm for Global Optimization
Author(s) -
Andi Tang,
Shangqin Tang,
Tong Han,
Huan Zhou,
Lei Xie
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/2298215
Subject(s) - mathematical optimization , population , computer science , convergence (economics) , chaotic , metaheuristic , local optimum , sma* , stability (learning theory) , algorithm , artificial intelligence , mathematics , machine learning , demography , sociology , economics , economic growth
Slime mould algorithm (SMA) is a population-based metaheuristic algorithm inspired by the phenomenon of slime mould oscillation. The SMA is competitive compared to other algorithms but still suffers from the disadvantages of unbalanced exploitation and exploration and is easy to fall into local optima. To address these shortcomings, an improved variant of SMA named MSMA is proposed in this paper. Firstly, a chaotic opposition-based learning strategy is used to enhance population diversity. Secondly, two adaptive parameter control strategies are proposed to balance exploitation and exploration. Finally, a spiral search strategy is used to help SMA get rid of local optimum. The superiority of MSMA is verified in 13 multidimensional test functions and 10 fixed-dimensional test functions. In addition, two engineering optimization problems are used to verify the potential of MSMA to solve real-world optimization problems. The simulation results show that the proposed MSMA outperforms other comparative algorithms in terms of convergence accuracy, convergence speed, and stability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom