z-logo
open-access-imgOpen Access
Robust Model Predictive Control for Energy Management of Isolated Microgrids Based on Interval Prediction
Author(s) -
Huihui He,
Shengjun Huang,
Yajie Liu,
Tao Zhang
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/2198846
Subject(s) - model predictive control , computer science , interval (graph theory) , robustness (evolution) , schedule , scheduling (production processes) , renewable energy , mathematical optimization , control theory (sociology) , control (management) , artificial intelligence , mathematics , engineering , biochemistry , chemistry , combinatorics , electrical engineering , gene , operating system
With the integration of Renewable Energy Resources (RERs), the Day-Ahead (DA) scheduling for the optimal operation of the integrated Isolated Microgrids (IMGs) may not be economically optimal in real time due to the prediction errors of multiple uncertainty sources. To compensate for prediction error, this paper proposes a Robust Model Predictive Control (RMPC) based on an interval prediction approach to optimize the real-time operation of the IMGs, which diminishes the influence from prediction error. The rolling optimization model in RMPC is formulated into the robust model to schedule operation with the consideration of the price of robustness. In addition, an Online Learning (OL) method for interval prediction is utilized in RMPC to predict the future information of the uncertainties of RERs and load, thereby limiting the uncertainty. A case study demonstrates the effectiveness of the proposed with the better matching between demand and supply compared with the traditional Model Predictive Control (MPC) method and Hard Charging (HC) method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom