Classification of Arrhythmia in Heartbeat Detection Using Deep Learning
Author(s) -
Wusat Ullah,
Imran Siddique,
Rana Muhammad Zulqarnain,
Mohammad Mahtab Alam,
Irfan Ahmad,
Usman Raza
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/2195922
Subject(s) - heartbeat , computer science , artificial intelligence , deep learning , cardiac arrhythmia , machine learning , pattern recognition (psychology) , data mining , medicine , computer security , atrial fibrillation , cardiology
The electrocardiogram (ECG) is one of the most widely used diagnostic instruments in medicine and healthcare. Deep learning methods have shown promise in healthcare prediction challenges involving ECG data. This paper aims to apply deep learning techniques on the publicly available dataset to classify arrhythmia. We have used two kinds of the dataset in our research paper. One dataset is the MIT-BIH arrhythmia database, with a sampling frequency of 125 Hz with 1,09,446 ECG beats. The classes included in this first dataset are N, S, V, F, and Q. The second database is PTB Diagnostic ECG Database. The second database has two classes. The techniques used in these two datasets are the CNN model, CNN + LSTM, and CNN + LSTM + Attention Model. 80% of the data is used for the training, and the remaining 20% is used for testing. The result achieved by using these three techniques shows the accuracy of 99.12% for the CNN model, 99.3% for CNN + LSTM, and 99.29% for CNN + LSTM + Attention Model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom