z-logo
open-access-imgOpen Access
Statistical Inference under Censored Data for the New Exponential‐X Fréchet Distribution: Simulation and Application to Leukemia Data
Author(s) -
Omar Alzeley,
Ehab M. Almetwally,
Ahmed M. Gemeay,
Huda M. Alshanbari,
E. H. Hafez,
M. H. Abu-Moussa
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/2167670
Subject(s) - statistical inference , inference , exponential distribution , statistics , computer science , exponential function , distribution (mathematics) , econometrics , mathematics , artificial intelligence , mathematical analysis
In reliability studies, the best fitting of lifetime models leads to accurate estimates and predictions, especially when these models have nonmonotone hazard functions. For this purpose, the new Exponential-X Fréchet (NEXF) distribution that belongs to the new exponential-X (NEX) family of distributions is proposed to be a superior fitting model for some reliability models with nonmonotone hazard functions and beat the competitive distribution such as the exponential distribution and Frechet distribution with two and three parameters. So, we concentrated our effort to introduce a new novel model. Throughout this research, we have studied the properties of its statistical measures of the NEXF distribution. The process of parameter estimation has been studied under a complete sample and Type-I censoring scheme. The numerical simulation is detailed to asses the proposed techniques of estimation. Finally, a Type-I censoring real-life application on leukaemia patient's survival with a new treatment has been studied to illustrate the estimation methods, which are well fitted by the NEXF distribution among all its competitors. We used for the fitting test the novel modified Kolmogorov–Smirnov (KS) algorithm for fitting Type-I censored data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom