z-logo
open-access-imgOpen Access
Stress Classification by Multimodal Physiological Signals Using Variational Mode Decomposition and Machine Learning
Author(s) -
Nilima Salankar,
Deepika Koundal,
Saeed Mian Qaisar
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/2146369
Subject(s) - support vector machine , artificial intelligence , preprocessor , pattern recognition (psychology) , electroencephalography , computer science , speech recognition , stress (linguistics) , multilayer perceptron , artificial neural network , psychology , linguistics , philosophy , psychiatry
In this pandemic situation, importance and awareness about mental health are getting more attention. Stress recognition from multimodal sensor based physiological signals such as electroencephalogram (EEG) and electrocardiography (ECG) signals is a very cost-effective way due to its noninvasive nature. A dataset, recorded during the mental arithmetic task, consisting of EEG + ECG signals of 36 participants is used. It contains two categories of performance, namely, “Good” (nonstressed) and “Bad” (stressed) (Gupta et al. 2018 and Eraldeír et al. 2018). This paper presents an effective approach for the recognition of stress marker at frontal, temporal, central, and occipital lobes. It processes the multimodality physiological signals. The variational mode decomposition (VMD) strategy is used for data preprocessing and for the decomposition of signals into various oscillatory mode functions. Poincare plots (PP) are derived from the first eight variational modes and features from these plots have been extracted such as mean, area, and central tendency measure of the elliptical region. The statistical significance of the extracted features with p  < 0.5 has been performed using the Wilcoxson test. The multilayer perceptron (MPLN) and Support Vector Machine (SVM) algorithms are used for the classification of stress and nonstress categories. MLPN has achieved the maximum accuracies of 100% for frontal and temporal lobes. The suggested method can be incorporated in noninvasive EEG signal processing based automated stress identification systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom