The Impact of Fleet Coordination on Taxi Operations
Author(s) -
Claudio Ruch,
Sebastian Hörl,
Joel Gächter,
Jan Hakenberg
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/2145716
Subject(s) - fleet management , operator (biology) , service (business) , fidelity , work (physics) , mode (computer interface) , transport engineering , operations research , computer science , quality of service , level of service , engineering , telecommunications , business , mechanical engineering , biochemistry , repressor , marketing , transcription factor , gene , operating system , chemistry
On-demand mobility has existed for more than 100 years in the form of taxi systems. Comparatively recently, ride-hailing schemes have also grown to a significant mode share. Most types of such one-way mobility-on-demand systems allow drivers taking independent decisions. These systems are not or only partially coordinated. In a different operating mode, all decisions are coordinated by the operator, allowing for the optimization of certain metrics. Such a coordinated operation is also implied if human-driven vehicles are replaced by self-driving cars. This work quantifies the service quality and efficiency improvements resulting from the coordination of taxi fleets. Results based on high-fidelity transportation simulations and data sets of existing taxi systems are presented for the cities of San Francisco, Chicago, and Zurich. They show that fleet coordination can strongly improve the efficiency and service level of existing systems. Depending on the operator and the city’s preferences, empty vehicle distance driven and fleet sizes could be substantially reduced, or the wait times could be reduced while maintaining the current fleet sizes. The study provides clear evidence that full fleet coordination should be implemented in existing mobility-on-demand systems, even before the availability of self-driving cars.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom