z-logo
open-access-imgOpen Access
Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1
Author(s) -
Yuting Zhou,
Xiao Shilin,
Chan Li,
Zhijie Chen,
Zhu Chen,
Qichun Zhou,
Jinying Ou,
Jing Li,
Yifei Chen,
Chaohua Luo,
Zhixian Mo
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/2136076
Subject(s) - methamphetamine , meth , conditioned place preference , pharmacology , microrna , addiction , neuroscience , biology , chemistry , microbiology and biotechnology , biochemistry , gene , monomer , organic chemistry , acrylate , polymer
Methamphetamine (Meth) is a highly addictive substance and the largest drug threat across the globe. There is evidence to indicate that Meth use has serious damage on central nervous system (CNS) and heart in several animal and human studies. However, the connection in the process of Meth addiction between these two systems has not been determined. Emerging data suggest that extracellular vesicles (EVs) carrying behavior-altering microRNA (miRNAs) play a crucial role in cell communication between CNS and peripheral system. Rhynchophylline (Rhy), an antiaddictive alkaloid, was used to protect the brain and heart from Meth-induced damage, which has caught our attention. Here, we used Meth-dependent conditioned place preference (CPP) animal model and cell model to verify the protective effect of Rhy-treated EVs. Further, small RNA sequencing analysis, qPCR, dual-luciferase reporter assay, and transfection test were used to identify the key EVs-encapsulated miRNAs, isolated from cultured H9c2 cells with different treatments, involved in the therapeutic effect and the underlying mechanisms of Rhy. The results demonstrate that Rhy-treated EVs exert protective effects against Meth dependence through the pathway of miR-183-5p-neuregulin-1 (NRG1). Our collective findings provide novel insights into the roles of EVs miRNAs in Meth addiction and support their potential application in the development of novel therapeutic approaches.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom