z-logo
open-access-imgOpen Access
A Classification Method of Network Ideological and Political Resources Using Improved SVM Algorithm
Author(s) -
Wenxia Wang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/2133042
Subject(s) - ideology , computer science , support vector machine , particle swarm optimization , classifier (uml) , algorithm , fuzzy logic , artificial intelligence , data mining , resource (disambiguation) , machine learning , politics , law , computer network , political science
In order to improve the accuracy and efficiency of the classification of network ideological and political resources and promote the efficiency of ideological education, a research on the classification of network ideological and political resources based on the improved SVM algorithm is proposed. We analyze the characteristics and current situation of network ideological and political resources and conclude that the method elements are open and technical. The ontology elements are rich and shared, and the behavioral elements are autonomous and interactive. Three types of network ideological and political resources are proposed: the main resource, content resource, and means resource. The particle swarm algorithm is used to improve the SVM algorithm. In the process of constructing the SVM classifier, the fuzzy membership function is introduced, the classification problem of network ideological and political resources is converted into a secondary planning problem, and the accuracy of network ideological and political resources is finally realized. Simulation results show that the use of improved algorithms to classify network ideological and political resources can improve the accuracy and efficiency of network abnormal data classification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom