A Prediction Method for the RUL of Equipment for Missing Data
Author(s) -
Wenbai Chen,
Chang Liu,
Weizhao Chen,
Huixiang Liu,
Qili Chen,
Peiliang Wu
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/2122655
Subject(s) - missing data , computer science , mean squared error , imputation (statistics) , data mining , artificial neural network , binary number , artificial intelligence , machine learning , algorithm , statistics , mathematics , arithmetic
We present a prediction framework to estimate the remaining useful life (RUL) of equipment based on the generative adversarial imputation net (GAIN) and multiscale deep convolutional neural network and long short-term memory (MSDCNN-LSTM). The method we proposed addresses the problem of missing data caused by sensor failures in engineering applications. First, a binary matrix is used to adjust the proportion of “0” to simulate the number of missing data in the engineering environment. Then, the GAIN model is used to impute the missing data and approximate the true sample distribution. Finally, the MSDCNN-LSTM model is used for RUL prediction. Experiments are carried out on the commercial modular aero-propulsion system simulation (C-MAPSS) dataset to validate the proposed method. The prediction results show that the proposed method outperforms other methods when packet loss occurs, showing significant improvements in the root mean square error (RMSE) and the score function value.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom