z-logo
open-access-imgOpen Access
Application of a New Generalized Fractional Derivative and Rank of Control Measures on Cholera Transmission Dynamics
Author(s) -
Kumama Regassa Cheneke,
Purnachandra Rao Koya,
Geremew Kenassa Edessa
Publication year - 2021
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/2021/2104051
Subject(s) - vibrio cholerae , cholera , mathematics , stability (learning theory) , stability theory , equilibrium point , derivative (finance) , population , mathematical analysis , differential equation , physics , biology , bacteria , microbiology and biotechnology , computer science , demography , machine learning , genetics , nonlinear system , quantum mechanics , sociology , financial economics , economics
In this study, the mathematical model of the cholera epidemic is formulated and analyzed to show the impact of Vibrio cholerae in reserved freshwater. Moreover, the results obtained from applying the new fractional derivative method show that, as the order of the fractional derivative increases, cholera-preventing behaviors also increase. Also, the finding of our study shows that the dynamics of Vibrio cholerae can be controlled if continuous treatment is applied in reserved freshwater used for drinking purposes so that the intrinsic growth rate of Vibrio cholerae in water is less than the natural death of Vibrio cholerae. We have applied the stability theory of differential equations and proved that the disease-free equilibrium is asymptotically stable if R 0 < 1 , and the intrinsic growth rate of the Vibrio cholerae bacterium population is less than its natural death rate. The center manifold theory is applied to show the existence of forward bifurcation at the point R 0 = 1 and the local stability of endemic equilibrium if R 0 > 1 . Furthermore, the performed numerical simulation results show that, as the rank of control measures applied increases from no control, weak control, and strong control measures, the recovered individuals are 55.02, 67.47, and 674.7, respectively. Numerical simulations are plotted using MATLAB software package.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom