z-logo
open-access-imgOpen Access
The Neimark–Sacker Bifurcation and Global Stability of Perturbation of Sigmoid Beverton–Holt Difference Equation
Author(s) -
M. R. S. Kulenović,
Connor O’Loughlin,
E. Pilav
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/2092709
Subject(s) - mathematics
We present the bifurcation results for the difference equation x n + 1 = x n 2 / a x n 2 + x n − 1 2 + f where a and f are positive numbers and the initial conditions x − 1 and x 0 are nonnegative numbers. This difference equation is one of the perturbations of the sigmoid Beverton–Holt difference equation, which is a major mathematical model in population dynamics. We will show that this difference equation exhibits transcritical and Neimark–Sacker bifurcations but not flip (period-doubling) bifurcation since this difference equation cannot have period-two solutions. Furthermore, we give the asymptotic approximation of the invariant manifolds, stable, unstable, and center manifolds of the equilibrium solutions. We give the necessary and sufficient conditions for global asymptotic stability of the zero equilibrium as well as sufficient conditions for global asymptotic stability of the positive equilibrium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom