A Study on the Topic-Sentiment Evolution and Diffusion in Time Series of Public Opinion Derived from Emergencies
Author(s) -
Meng Cai,
Han Luo,
Ying Cui
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/2069010
Subject(s) - object (grammar) , public opinion , social media , event (particle physics) , autoregressive integrated moving average , government (linguistics) , computer science , realization (probability) , sentiment analysis , data science , social network (sociolinguistics) , the internet , political science , world wide web , artificial intelligence , time series , law , linguistics , philosophy , physics , statistics , mathematics , quantum mechanics , machine learning , politics
With the development of the Internet, social media has become an important platform for people to deal with emergencies and share information. When a public health emergency occurs, the public can understand the topics of the event and perceive the sentiments of others through social media, thus building a cooperative communication network. In this study, we took the public health emergency as the main research object and the natural disaster, accident, and social security event as the secondary research object and further revealed the law of the formation and evolution of public opinion through the analysis on temporal networks of topics and sentiments in social media platforms. Firstly, we identified the derived topics by constructing the topic model and used the sentiment classification model to divide the text sentiments of the derived topics into two types: positive sentiment and negative sentiment. Then, the ARIMA time series model was used to fit and predict the evolution and diffusion rules of topics and sentiments derived from public opinions on temporal networks. It was found that the evolution law of derived public opinions had similarities and differences in various types of emergencies and was closely related to government measures and media reports. The related research provides a foundation for the management of network public opinion and the realization of better emergency effects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom