z-logo
open-access-imgOpen Access
A Quasioppositional-Chaotic Symbiotic Organisms Search Algorithm for Distribution Network Reconfiguration with Distributed Generations
Author(s) -
Minh-Tuan Nguyen Hoang,
Truong Hoang Bao Huy,
Khoa Truong Hoang,
Khanh Dang Tuan,
Dieu Ngoc Vo
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2065043
Subject(s) - control reconfiguration , chaotic , computer science , cls upper limits , local search (optimization) , algorithm , mathematical optimization , artificial intelligence , mathematics , embedded system , medicine , optometry
This study suggests an enhanced metaheuristic method based on the Symbiotic Organisms Search (SOS) algorithm, namely, Quasioppositional Chaotic Symbiotic Organisms Search (QOCSOS). It aims to optimize the network configuration simultaneously and allocate distributed generation (DG) subject to the minimum real power loss in radial distribution networks (RDNs). The suggested method is developed by integrating the Quasiopposition-Based Learning (QOBL) as well as Chaotic Local Search (CLS) approaches into the original SOS algorithm to obtain better global search capacity. The proposed QOCSOS algorithm is tested on 33-, 69-, and 119-bus RDNs to verify its effectiveness. The findings demonstrate that the suggested QOCSOS technique outperformed the original SOS and provided higher-quality alternatives than many other methods studied. Accordingly, the proposed QOCSOS algorithm is favourable in adapting to the DG placement problems and optimal distribution network reconfiguration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom