Multitask Learning for Aspect-Based Sentiment Classification
Author(s) -
Chunhua Yao,
Xinyu Song,
Xuelei Zhang,
Weicheng Zhao,
Ao Feng
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/2055555
Subject(s) - computer science , sentiment analysis , overfitting , semeval , task (project management) , artificial intelligence , multi task learning , natural language processing , machine learning , context (archaeology) , artificial neural network , paleontology , management , economics , biology
Aspect-level sentiment analysis identifies the sentiment polarity of aspect terms in complex sentences, which is useful in a wide range of applications. It is a highly challenging task and attracts the attention of many researchers in the natural language processing field. In order to obtain a better aspect representation, a wide range of existing methods design complex attention mechanisms to establish the connection between entity words and their context. With the limited size of data collections in aspect-level sentiment analysis, mainly because of the high annotation workload, the risk of overfitting is greatly increased. In this paper, we propose a Shared Multitask Learning Network (SMLN), which jointly trains auxiliary tasks that are highly related to aspect-level sentiment analysis. Specifically, we use opinion term extraction due to its high correlation with the main task. Through a custom-designed Cross Interaction Unit (CIU), effective information of the opinion term extraction task is passed to the main task, with performance improvement in both directions. Experimental results on SemEval-2014 and SemEval-2015 datasets demonstrate the competitive performance of SMLN in comparison to baseline methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom