Multiobjective Optimization of Turbine Coolant Collection/Distribution Plenum Based on the Surrogate Model
Author(s) -
Junsheng Chai,
Zhenyu Wang,
Xuanling Zhao,
Chunhua Wang
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/2033711
Subject(s) - latin hypercube sampling , coolant , turbine , surrogate model , multi objective optimization , computational fluid dynamics , plenum space , pareto principle , computer science , mechanics , mechanical engineering , mathematics , engineering , mathematical optimization , monte carlo method , physics , statistics
The turbine coolant collection/distribution chamber, as an important component of the secondary air system, undertakes the task of collecting and distributing coolant for guide vanes. To improve the outflow uniformity and reduce the flow loss, a multiobjective optimization method is developed for geometric parameters of turbine chamber. Numerical experiments were designed by Latin hypercube sampling and solved by the CFD method. Based on these data sampling, least square support vector machine (LS-SVM) was used for the surrogate model, and a kind of chaotic optimization algorithms was used for searching for the Pareto solution set. The results show that the streamline change in the optimized chamber is smoother, and the jet impingement effect of the coolant from the inlet tube was significantly weakened. At the condition that each goal has the weight of 0.5, the optimized discharge coefficient increases by 26%, and the outflow nonuniformity decreases by 79% compared with reference structure.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom