z-logo
open-access-imgOpen Access
A Hybrid Genetic Algorithm for Integrated Truck Scheduling and Product Routing on the Cross-Docking System with Multiple Receiving and Shipping Docks
Author(s) -
Wooyeon Yu,
Chunghun Ha,
Sejoon Park
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/2026834
Subject(s) - dock , heuristics , truck , vehicle routing problem , scheduling (production processes) , job shop scheduling , computer science , mathematical optimization , genetic algorithm , algorithm , engineering , routing (electronic design automation) , mathematics , computer network , marine engineering , aerospace engineering
In this research, a truck scheduling problem for a cross-docking system with multiple receiving and shipping docks is studied. Until recently, single-dock cross-docking problems are studied mostly. This research is focused on the multiple-dock problems. The objective of the problem is to determine the best docking sequences of inbound and outbound trucks to the receiving and shipping docks, respectively, which minimize the maximal completion time. We propose a new hybrid genetic algorithm to solve this problem. This genetic algorithm improves the solution quality through the population scheme of the nested structure and the new product routing heuristic. To avoid unnecessary infeasible solutions, a linked-chromosome representation is used to link the inbound and outbound truck sequences, and locus-pairing crossovers and mutations for this representation are proposed. As a result of the evaluation of the benchmark problems, it shows that the proposed hybrid GA provides a superior solution compared to the existing heuristics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom